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Abstract—Federated Learning (FL) is a decentralized learning
paradigm that is expected to play a substantial role in both the
network management of 5G and beyond protocols and smart city
applications like Intelligent Transportation System (ITS). The
massive scale and decentralized nature of FL makes them depend
on Vehicular Ad-hoc Networks (VANETSs) to support model
exchanges between the FL participants. However, traditional FL
simulators are not designed to model the communication behavior
of a VANET. We address this gap by proposing an integrated
simulation approach to facilitate combined studies of FL and
VANET. We describe the necessary design changes to common
simulation components and implement a sample simulator by
extending a simplified VANET simulator. We demonstrate the need
of such integrated simulation, illustrating that typical VANET
effects substantially impact FL training — and that FL training
substantially impacts ITS infrastructure. We also demonstrate the
fidelity and performance of our approach by comparing it with
a traditional FL simulator. Finally, we discuss the applications
and limitations of our proposed approach.

Index Terms—Federated Learning, ITS, VANET Simulations

I. INTRODUCTION

Federated Learning (FL), a technique for building an Artifi-
cial Intelligence (AI) model through iterative and decentralized
training, is expected to play a prominent role in the network
management of 5G and beyond protocols. Management of
computing and network resources, load prediction, and network
data analytics are some network management functions handled
by FL [1].

In parallel, Al is also expected to play an integral role in
enabling smart cities to achieve their sustainability goals [2]
and, as an integral component of a smart city, smart mobility
and Intelligent Transportation Systems (ITSs) are also affected
by this push. Indeed, FL is one of the emerging paradigms that
is seeing a growing adoption for ITS applications. Traffic
flow prediction, traffic target recognition, route planning,
and parking management are examples for FL-based ITS
applications [3] — and FL could enable privacy-conscious data
sharing for explainable cooperative ITS applications [4].

As FL is an Al paradigm, it depends on large amounts
of data for model training. This adds additional load on the
already limited communication resources. Predictions indicate
that the communication requirements of the smart city will
outgrow the capabilities of 5G by 2030 [5]. This, together with
the massive scale and decentralized nature of FL. makes them
depend on Vehicular Ad-hoc Networks (VANETS) to support
model exchanges between the FL participants. In addition,

the hardware capabilities of the vehicles can also constrain
the training process. Hence, adding FL. must be thoroughly
studied to make it feasible on the limited hardware and VANET
resources.

Due to the large scale of both the systems under study and
the required data, many researchers turn to simulators to assist
in studying FL-based ITS applications [6]. Some traditional
FL simulators even allow the estimation of communication
costs and support methods such as quantization to reduce
message size [7]. However, they are not designed to model the
communication behavior of a VANET. Further, they are not
suitable to model the agent-like behavior of the vehicles. Hence,
there is a necessity for a simulator that supports combined
modeling of FL and VANET behavior. Recognizing the need,
Lobato et al. [8] proposed FLEXE for modeling FL-based
ITS applications. FLEXE is designed by extending a high-
fidelity VANET simulator called Veins [9]. However, the
high computational complexity of Veins prohibits large-scale
evaluations without the help of High-Performance Computing
(HPC) resources.

In this paper, we propose an integrated simulation approach
to enable studies of FL in ITS applications. Initially, we present
a summary of the current research work and highlight the
necessity of the simulator. Further, we describe the important
adaptations of the FL behavior to consider the VANET-specific
aspects. Next, we discuss the implementation choices and
describe the necessary components of the simulator. We validate
the implementation by comparing the results with a traditional
FL simulator. Further, we demonstrate that our approach can
model the combined FL and VANET behavior. Finally, we
discuss the strengths and limitations of the proposed simulator
and outline the potential applications.

II. RELATED WORK

FL is applied to a variety of ITS applications. A privacy-
preserving estimation of electric charging behavior is carried
out using FL [10]. The vehicle charging information from
multiple locations is used to train a model that forecasts
the charger usage estimations for the subsequent days. A
personalized zone prediction for taxi drivers is developed using
FL [11]. A real-world taxi dataset is used to forecast the
recommended zones for a taxi, considering individual drivers’
preferences. A semi-asynchronous trajectory prediction method
is trained using FL [12].



In addition to applications, improved methods of FL are
proposed to make them suitable for the VANET. A reputation-
based client selection scheme is proposed to account for
VANET constraints [13]. A privacy-preserving aggregation
method is developed for the VANET environment [14]. These
methods are evaluated using virtual machines, with each client
and server having dedicated computing resources. Participants
communicate using inter-process communication protocols like
gRPC. Scaling can be expensive for such implementations.

Alternatively, traditional FL simulators can be used for
studying large-scale applications. Being a relatively new
technology, it has garnered huge attention from the research
community, leading to the development of several open-source
simulators [6], [15], [16]. The simulators support essential
features of FL, such as heterogeneity, resource limitations,
non-Independent and Identically Distributed (IID) data, and
communication constraints. However, traditional FL simulators
do not model the intricacies of a VANET scenario. Modeling
the interactions of VANET participants is essential to derive
reliable insights about the communication load in ITS. Hence,
traditional FL simulators are not sufficient to capture the
intricacies of FL in ITS applications.

A simulator to study FL-based ITS applications requires
modeling of mobility, network, and FL behavior. The mobility
and network components combination is readily available as
a VANET simulator. Hence, significant development efforts
can be saved by extending an existing VANET simulator
with support for FL. An example of this approach is the
implementation of FLEXE [8] as an extension of Veins [9].
FLEXE is demonstrated with a training example of Multilayer
Perceptron (MLP) model using 200 vehicles.

The computational complexity limits the scenario’s scale
because of the high-fidelity models of Veins. As the focus is on
the FL behavior, though, simplifying network or mobility com-
ponents is a reasonable choice. This reduces the computational
complexity and allows high-fidelity modeling of FL behavior. A
network simulator can act as a VANET simulator with mobility
simplified to vehicular traces. Authors of [17] developed a
coupled simulation framework using ns-3 and FLSim [7]. ns-3
is a high-fidelity network simulator that supports 5G through
an extension [18]. However, ns-3 is computationally complex
because it is geared toward protocol research. Indeed, the
experiments confirm that ns-3 is the bottleneck [17].

Alternatively, a mobility simulator can be coupled with an
FL simulator. An example is the city-scale study of parking lot
occupancy prediction using FL [19]. Authors use SUMO [20]
as the mobility simulator. Interestingly, the demonstration
scenario is on a city scale. However, the model training
happens once per simulation day, which implies a substantially
lower training load. This allowed the authors to focus only
on speeding up the SUMO simulations by employing extra
computing resources. A higher model training load increases
the computation requirements and prevents the ability to study
city-scale scenarios.

A high-fidelity network or mobility simulator is a good
choice for small-scale scenarios [8], [17] or scenarios with

[S1...54] - vehicle states
%% - selected client
£ -Road-side Unit

(o]

NS

Local Models
from clients

& ~_ @
! <)

Global ’”
Model ‘f

S:

W

[S1,52]

e

]

V)

<« w

SEREE I \/

4 P Global g,
Ss2 »
$1 . Trained Model ¥
'
i

)
¥ Local Model |
\ !
=
®

)

'

i

2 2
Al A

Figure 1. Federated Learning in a VANET scenario

infrequent model training [19]. However, this does not match
some of the use cases envisioned for FL. in VANET, wherein it
is expected to train multiple models several times throughout
the day [21]. The advanced applications of ITS, such as
Autonomous Vehicles (AVs), require regular model updates
to tackle the evolving traffic and weather conditions. Hence,
simplifying only one of the components of VANET fails to
improve the scalability.

Simplifying mobility and network components allows high-
fidelity modeling of FL. This approach is common in problem-
specific simulators that are increasingly being proposed to
evaluate 5G technologies for ITS. The network slicing research
community employs a simulator specifically for VANET slice
management [22]. V2XArcSim enables infrastructure manage-
ment studies for VANETs [23]. In addition to technology-
specific simulators, application-specific simulators have also
been designed. For example, a special simulator is proposed to
study autonomous driving with 5G [24]. The targeted approach
of designing simulators compromises on generalization but
offers scalability. As a result, the simulator can focus on
modeling the problem under study in high fidelity and conduct
large-scale evaluations.

FL, though, is a technology that is expected to play a key role
in ITS with several open research questions [21]. This warrants
a dedicated simulator to study FL in the context of ITS. This
paper addresses the gap by proposing an integrated simulation
approach to study ITS applications based on FL. We propose
using the VANET simulator with the simplified network and
mobility components to support large-scale evaluations. We
validate our implementation and demonstrate that the traditional
FL simulator falls short in modeling the constraints of VANET
environment.

III. FEDERATED LEARNING IN VANETS

In a traditional Machine Learning (ML) model training, raw
data from various sources is collected at a central location.
After pre-processing the data, the model is trained and utilized
for inference. However, privacy and communication constraints
prevent access to raw data from all available clients. To mitigate



these concerns, an alternative strategy is proposed in the form
of FL [25]. In FL, a central server is designated to train the
ML model using a federation of clients.

In the VANET context, vehicles act as clients, and a central
traffic controller acts as a server. FL in a typical urban VANET
scenario is shown in Figure 1. Roadside Units (RSUs) are
distributed across the road network and are designed to have a
stable connection to the server. Vehicles interact with the RSUs
and share their state information, which is then forwarded to the
server. The server selects a set of vehicles for training using the
state information. The local model is transmitted to the relevant
RSUs so they can forward it to the selected vehicles. Once
the model training is completed on the vehicle, the updated
local model is transmitted to any RSU that the vehicle can
communicate with. Note that it need not be transmitted to
the same RSU that initially sent the global model to begin
training. Once the training round is completed, local models
are forwarded to the RSUs, which are further forwarded to the
server.

Modeling FL needs several considerations, such as client
selection, model aggregation, data heterogeneity, system hetero-
geneity, communication constraints, etc. These are discussed
in detail by the traditional FL simulators and their respective
documentation [6], [7]. Since we are modeling FL for ITS
applications, it is essential to adapt these considerations for
the VANET environment.

A. State

Traditional FL simulators often create clients on the fly and
destroy them once the training round is completed. Such an
implementation does not meet the requirements of VANET
agents. Typically, VANET behavior is modeled such that the
agent has a persistent state for the entire duration of its trip.
Moreover, the FL training in a VANET environment has to
be opportunistic by utilizing the available clients. It is not
reasonable to create vehicles on the fly to have sufficient
participants in the training. Hence, the behavior of the client
and server as a VANET agent must not depend on its role in the
FL training. To achieve this, our approach models the agents
as first and foremost VANET agents with the FL behavior as
an extension. The server initiates the activities of the FL, and
the clients must react and update their state accordingly.

B. Discrete-time paradigm

Traditional FL. simulators do not consider discrete-time
paradigms. The execution time is determined by the number of
training rounds [6], [7]. On the other hand, VANET simulation
is typically modeled using a discrete-time paradigm with
agent-based model (ABM) [9]. Since our approach relies
on extending VANET agents, a discrete-time paradigm with
ABM is incorporated. Another benefit is this implementation
allows expansion of the FL behavior to consider the practical
aspects of VANET. For instance, all the individual steps of
FL, client analysis, client selection, training rounds, and model
aggregation can be designed to take a configurable amount of
time. As a result, the training failures due to client dropouts

are naturally induced due to the VANET behavior instead of
random probabilistic choices.

C. Vehicle Sensors

Traditional FL simulators do not consider the sensor behavior
of the vehicles in data allocation. At the beginning of the
simulator, the datasets are divided into partitions, which are
distributed to the clients. Later, when a client is selected for
training, the entire partition is immediately available for use.
However, this is not the only mode in which VANET clients
behave. Hence, the simulator should support an additional
behavior where the samples are available gradually over time.
The two possible configurations in which VANET clients can
be modeled are:

o Immediate: The entire partition is immediately available
for training. This is similar to the default behavior of
traditional FL simulators. This approach is valid for
scenarios where the model is infrequently trained, or
sensors are event-based with sparse data collection. In such
scenarios, it can be assumed that the vehicles collected
the necessary data on their previous trip.

o Sensor-like: The client should gradually mark a config-
urable fraction of samples from the partition as available
for training. This matches the vehicle behavior because
vehicles collect the sensor data gradually as they drive. The
approach is suitable when the sensor data is collected at
regular and high-frequency intervals. However, the limited
onboard storage can prevent the vehicles from storing the
data longer [26]. Hence, the collected samples must be
allowed to go stale after a configured period.

D. Heterogeneity

The decentralized nature of FL gives rise to heterogeneity.
There are four types of heterogeneity: statistical, model,
communication, and device [27]. VANET scenarios express all
forms of heterogeneity, but it depends on the VANET behavior.
For instance, Gaussian noise or blur is added as feature skew
in FL to account for sensor variations among the clients [28].
In VANET, this can be modeled as an agent behavior instead
of a random process. The amount of noise and blur added to
the features can be modeled based on the vehicle’s properties,
like speed, manufacturer, or sensor.

E. Client Selection

At each training round, the server must select a subset of
clients for the training process. Common proposals of FL
suggested utilizing a randomly sampled subset of available
clients [25]. Random selection works for most cases. However,
the training process can be improved by exploiting certain client
characteristics. Several client selection processes are proposed
to exploit the system and data heterogeneity [29]. Traditional
FL simulators have default implementations for many popular
client selection techniques. Our approach supports adapting
these client selection methods for VANET scenarios.

In addition to the heterogeneity aspects considered for client
selection, agent-like vehicle behavior should be supported. This



might be as simple as selecting only vehicles of a particular
manufacturer for training or as complex as ensuring that a
vehicle approaching its destination might not be selected for
training as it may exit the road network before uploading the
local model. Many similar approaches might be considered
worthwhile to investigate: A vehicle that has just entered the
network might not be preferred because very little sensor data
is available for training. Emergency vehicles may or may not
be included in the selection. Vehicles in one sub-region may
be preferred over another because of the interesting dynamic
conditions like weather or traffic. During the non-driving period,
the vehicles might be inactive and cannot be selected for
training. Our proposed simulator supports the configuration of
client selection methods to respect these vehicular aspects.

F. Communication

Communication is modeled as a random process in a
traditional FL simulator. However, this fails to capture the
actual VANET behavior. Moreover, the control over the
communication aspects of the simulation is limited. Our
proposed simulator stems from the VANET simulator as an
extension. As a result, the behavior of the VANET can be
accurately captured. Further, this allows reliable estimation of
the impact of FL data loads on the entire ITS infrastructure.
Because of the ABM implementation, what-if questions can be
explored in the VANET parameter space. For instance, what
is the impact on training performance if 25% of RSUs are
offline?

IV. IMPLEMENTATION
A. VANET Simulator

We implement the proposed simulator with some of the
primary features described in Section III. The required modifi-
cation is that the VANET agent behavior must be extended to
perform the FL client and server tasks. There are several poten-
tial VANET simulators that can be selected for implementing
our approach [9], [30], [31]. A simplified VANET simulator is
preferred for its scalability. It must be noted that the simplified
simulator results in insights indicative of a steady-state network
behavior. Despite this limitation, the advantage is that it enables
a holistic steady-state evaluation of the system-wide impact. For
a complex evaluation that focuses on resilience, a high-fidelity
simulator like FLEXE can be employed [8].

Another benefit of using a simplified but scalable VANET
simulator is that this leaves room to model FL behavior in
high fidelity. The use cases for ITS applications are expected
to train Al models several times throughout the day [21].
Further, multiple AI models need training because of the
various applications to serve. Hence, simplifying the VANET
simulations enables studying scenarios with a high model
training load.

In our approach, a simplified VANET simulator called
Disolv is used [31] which allows ITS investigations such as
optimization studies [32] at scale. Disolv returns comparable
results in steady state compared to other high-fidelity VANET
simulators. The agent model of Disolv is extended to support
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Figure 2. State diagram of a Federated Learning Server

FL client and server models. This results in an integrated
simulator implementation.

B. Server

The state diagram for a server is shown in Figure 2. Every
server is initialized with the Idle state, and it performs VANET
activities until it is time to begin the FL procedure. The server
collects the state information about clients in the Analysis state.
If there are valid clients, the server changes to the selection
state. Otherwise, it continues in the Analysis state. At least one
client is selected for training in each round, and the selected
clients are informed to initiate the training process. Once the
pre-defined training duration is completed, the server moves
to the Aggregation state and collects the local models. If all
the selected clients fail the training process, the Aggregation
step is skipped. After aggregating the models, the server goes
back to the Idle state.

The state transition condition depends on another factor,
which is the time spent in each state. The user can define a
specific time to spend in each state. As a result, the state
transitions are spaced out over a period. The Sensor-like
behavior mimics the VANET agents collecting the sensor
data gradually. By spreading out the server tasks, vehicles
are allowed sufficient time to collect sensor data for training.
Another benefit is that the clients and server can break their
model uploads into chunks and complete them within the
designated time of the state. This also mimics the real world,
where the server performs various tasks. The desired model
training can be assumed to be one of the tasks the server carries
out based on a schedule.

C. Client

Clients are designed to be simple and merely respond to the
server’s commands. When a client is selected for training, the
server sends the global model as the starting point. Using the
global model, the client begins the training process and builds
an updated local model. Once the server requests the training
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Figure 3. Road networks used in the simulations along with the RSU positions
(Map data from OpenStreetMap, openstreetmap.org/copyright).

to conclude, the client uploads the trained model. Each client
carries out these activities along with its VANET behavior.

D. Flexibility

The VANET agent implementation is extended to support
FL behavior. Every agent, irrespective of their role in the
VANET simulation, can be assigned the role of either FL
client or server. This allows flexibility in modeling a variety
of FL training scenarios. An RSU can act as an FL server and

control a training process with vehicles in its vicinity as clients.

Similarly, a central server can act as an FL server and train
the models on RSUs. A cooperative training scenario can be
designed among the vehicles, with one of the vehicles acting
as a server. Combining different approaches into a multi-model
training scenario is also possible.

V. EXPERIMENTS
A. Scenarios

A simple federated training of the MNIST model is selected
to demonstrate the capabilities of our proposed simulator. Initial
experiments validate the simulator, and further experiments
demonstrate the impact of VANET behavior in FL. By
default, the dataset is distributed uniformly across the clients,
mimicking an IID scenario. For the VANET aspects, a typical
VANET environment is created. The road network consists
of RSUs distributed over the network, most placed at the
intersections. RSUs are assumed to have a fixed connection to
the central server. Vehicles communicate periodically as they
traverse the road network. Each vehicle is allocated with a
single trip over the simulation. Two different scenarios with
varying sizes of road networks called village and district
scenarios are designed.

1) village scenario: This is a simple network with 3 RSUs
and 100 vehicles. The simulation duration is set to 600s, and
the time step is 0.1s.

2) district scenario: This is a slightly larger road network
with 33 RSUs and 2218 vehicles. The simulation duration is
set to 3800s, and the time step is 0.1s.
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Figure 4. Validation of mean global model accuracy obtained from 10 runs
for district scenario. Note that the number of clients and rounds in Flower are
configured based on the results from the proposed simulator.

Table I
TIMING CONFIGURATION FOR FL SERVER

Time in Seconds

Parameter

village scenario  district scenario
Initiation duration 20 63
Analysis duration 2 2
Selection duration 2 2
Training duration 15 30
Aggregation duration 5 2

The road networks are shown in Figure 3. The timing settings
for the FL server are mentioned in Table I. The default model
settings are mentioned in Table II. The default client selection
method is random, and the default aggregation method is
FedAvg [25]. All the experiments use these settings unless
mentioned otherwise. In the following subsections, we describe
the experiments and their important takeaways.

B. Validation

This experiment aims to build an FL scenario in the proposed
simulator and replicate the same in a traditional FL. simulator
for validation purposes. Flower is selected as the traditional
FL simulator for comparison. The dataset allocation is set to
Immediate because it is the default in Flower. We select the
MNIST model for training in the district scenario. Because
of our simulator’s emergent behavior, pre-determining the
FL parameters, such as the number of clients and rounds,
is impossible. Hence, we initially run the simulations in our
implementation and observe these parameters. Later, the Flower
experiments are configured accordingly.

In this scenario, the selected clients varied between 2 and
3, with 3 being the most common. This variation in trained
clients is possible because the vehicles begin and end their
trips throughout the simulation. Further, the number of possible
training rounds is found to be 37. This is due to selecting the
FL server timings as per Table I. Hence, we performed the



Table 11
PARAMETER SETTINGS FOR MNIST MODEL TRAINING

Parameter Value
Number of epochs 3
Batch size 100
Learning rate 0.0001
Number of Classes 10
Dropout 0.5
Random share in village 0.2
Random share in district 0.04
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Figure 5. Effect of sensor data allocation behavior on model accuracy

Flower experiment for 37 rounds with 2 client and 3 client
configurations.

The validation results are shown in Figure 4. The global
model accuracy is the mean value of 10 experiment runs. De-
spite the initial variations, the accuracy of all three simulations
eventually converges to a very close value. In the following
subsections, we investigate the effects of VANET behavior on
the FL training.

C. Sensor Data Behavior

The goal of this experiment is to determine the impact of
the Sensor-like behavior of vehicles in collecting the samples.
MNIST model is trained in the village scenario. The dataset
allocation is set to Sensor-like with two configurations. In the
first configuration, vehicles collect 1 sample per second. In the
second configuration, vehicles collect 2 samples per second.
As a baseline, the Immediate setting is used to mimic the
traditional FL simulator behavior.

The experiments are carried out to determine mean global
accuracy over 10 experiment runs per setting. The results
are shown in Figure 5. The Sensor-like configuration allows
the gradual collection of data, resulting in fewer samples for
training. The server timing configuration in Table I also plays a
role in this behavior. The data partitions are larger in the village
scenario with about 600 samples per vehicle. As a result, the
vehicles have little time to collect their entire partition.

On the other hand, the district scenario has many vehicles,
resulting in smaller data partitions per vehicle (26). Hence, for
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Figure 6. Impact of VANET behavior on client selection methods

the selected initiation time, vehicles have enough time to collect
most of the samples from their partitions. As a result, the impact
of Sensor-like behavior is minimal in the district scenario. The
global accuracy is comparable for all the experiments, and the
figure is omitted for brevity. This experiment clearly shows
that the VANET agent behavior affects FL training.

D. Client Selection

Heterogeneity is typical of an FL scenario. The default
client selection can be replaced with a more intelligent one
to improve the convergence speed. Many methods exist to
optimize the selection process based on various clients and
their data characteristics [33]. The simplest method is based
on the statistical utility of the client, which suggests selecting
clients with the maximum sample count. We define this method
as FedMaxSamples. We compare the training performance with
random client selection and FedMaxSamples. An MNIST model
is trained in the village scenario. The partition method is set
to Sensor-like with 1 sample per second configuration.

The average global model accuracy over the 10 runs is
shown in Figure 6. Along with the accuracy, the average client
failures are compared on the second y-axis. As expected, the
FedMaxSamples method improves the model accuracy but
introduces a side effect. Client failures are the number of
selected clients that failed to upload the local model to the FL
server. Because of the variations between the rounds, the client
failure average taken over multiple runs will not be a whole
number. With random selection, there were 6.5 failures on
average. Whereas, with FedMaxSamples selection, the failures
increased to 14.8. Vehicles close to completing their trip have
maximum samples, and FedMaxSamples selects these clients
for training. Hence, the vehicles have little time to complete
the training, resulting in client failures.

A combination of VANET agent behavior, the server timings,
and the FedMaxSamples design are responsible for this behavior.
The results demonstrate that our proposed simulator can capture
these inter-dependent phenomena of FL and VANET.
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Table III
EXECUTION TIME COMPARISON FOR THE “DISTRICT” SCENARIO

Scenario Execution time
FL scenario (Flower) 31s
FL+VANET scenario (our approach) 120s

E. Communication Results

Capturing the impact of VANET is another crucial goal for
the proposed simulation approach. The hardware deployed for
ITS is managed by 5G and beyond protocols. VANET is ex-
pected to have its own network slice [22]. This experiment aims
to understand the additional data load that the ITS infrastructure
has to support because of the FL introduction. The connection
from RSUs to FL server is assumed to be stable. Hence, the
interesting part is the wireless communication between RSU
and the vehicles. We compute the total transmission load of
the RSUs. The insights will allow estimating changes for the
VANET network slice to avoid disrupting the FL training.

MNIST model is trained for district scenario. An experiment
with no FL training is simulated as a baseline. The vehicles and
RSU exchange default information of size 100 bytes every time
step. In the FL scenario, in addition to the default information,
the FL related data like the AI models are also transmitted. The
RSU load comparison is shown in Figure 7. The load increase
is marginal in all but two RSUs. The total data transfer increase
is ~526MB for the entire simulation period of 3800 seconds.
Accordingly, the placement of the RSUs can be adjusted to
alleviate the load on these two specific RSUs. This experiment
highlights the capabilities of the proposed simulator in capturing
the impact on the infrastructure due to FL training.

F. Runtime Performance

Several techniques are proposed to accommodate ITS
environment constraints in FL training [34], [35]. However,
the evaluations are rarely carried out on a large scale. One
of the reasons is the higher performance cost of simulating

both FL and VANET together [8]. Our implementation is
based on a simplified VANET simulator with a relatively
low computational cost. Table III shows execution times for
the district scenario with Flower and with our approach.
Compared to 31 seconds for Flower (which does not consider
VANET behavior), with 2200 agents, our approach takes 120
seconds. Hence, for a reasonable increase in execution time, our
simulator can study the combined effects of FL and VANET.
As a result, complex algorithms for FL techniques can be
studied at scale. Further, there is more room for training load
to consider larger ML models.

VI. DISCUSSION

Traditional FL simulators are built to model any external
factors as random distributions. VANET behavior is intricate
and requires ABM to capture the complex interactions. The
emergent phenomena of VANETS also impact the outcomes in
the FL training. Such complex interactions demand a different
perspective to evaluate. Our proposed approach has several
benefits, with the main contribution being the ability to study
the combined effects of FL. and VANET at scale.

In addition to the realistic FL. modeling, there are benefits
from the VANET perspective. Our simulator can be used to
understand the communication side of the FL in greater detail.
The network capacity can be evaluated to determine if it
is sufficient for the FL scenarios. Further, it is possible to
pinpoint the exact region and the entity that needs attention.
As shown in Figure 7, two RSUs see a comparatively higher
data load. Additional RSUs can be deployed to share their
data load and avoid communication failures. In addition to the
network constraints, new modes of operation can be evaluated
for feasibility. Collaborative FL. model training scenarios among
the participants of the VANET can be studied. This can include
exploiting the resources of parked cars as edge computing
devices and offloading the training process to them. Further,
a decentralized FL server can be considered because of the
geographical constraints in large regions.

One of the main limitations of our simulator is that, by
design, the results are indicative only of a stable state of the
system. Network overload effects, such as latency and packet
failures, cannot be modeled using a simplified simulator. This
makes it unsuitable to investigate use cases that focus on, e.g.,
communication technology research, instead of larger-scale
network behavior.

VII. CONCLUSION

This paper proposes a new integrated simulation approach
for investigating Federated Learning (FL) in Vehicular Ad-
hoc Networks (VANETSs) at scale. The proposed approach
extends our large-scale Intelligent Transportation System (ITS)
simulator Disolv to also model FL behavior. The validation
experiment with Flower shows that (in cases with simplified
VANET behavior that both simulators can model) both simula-
tors produce comparable results. Further, the sensor behavior
and client selection comparisons demonstrate the impact of true
VANET behavior on FL training. An investigation of runtime



performance shows that the approach incurs only a reasonable
increase in execution time compared to much more simplified
studies. To foster both FL and larger-scale ITS research, we
share our implementation of the proposed approach as open
source.
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