
Optimizing Very Large Scale ITS Applications With
Fast Fitness Evaluation

Nagacharan Teja Tangirala∗, Rouven Rischert∗, Christoph Sommer†, and Alois Knoll∗
∗Chair of Robotics, Artificial Intelligence and Real-time Systems, Technical University of Munich, Munich, Germany

†TU Dresden, Faculty of Computer Science, Germany
nagacharan.tangirala@tum.de, ge47max@mytum.de, cms-labs.org/people/sommer, k@tum.de

Abstract—As wireless communication technology advances, the
complexity of Vehicular Ad-hoc Network (VANET) simulations
increases. This, however, is at odds with the need for increasingly
large-scale Intelligent Transportation Systems (ITS) scenarios to
satisfy the demands of increasingly Artificial Intelligence (AI)
based solutions. This paper aims to demonstrate that a high-
performance simplified VANET simulator can be used for fitness
evaluation without loss in solution quality. As an example, we
implement a Roadside Unit (RSU) deployment approach based
on a genetic algorithm. Disolv, a simplified VANET simulator, is
used as a fitness evaluation tool. To validate the solution quality,
the best solutions of a few select generations are evaluated
with a fully-featured ns-3 driven VANET simulation. From
the comparison of fitness values, it can be observed that the
values from Disolv allow us to predict those obtained via ns-3.
Further, the execution time analysis showcases the substantial
performance gains of using a more abstract VANET simulator.
A 4.6-hour analysis with Disolv contrasts approximately 300
days with ns-3 for the given scenario and settings. Finally,
the potential applications and limitations of using a simplified
VANET simulator are discussed.

Index Terms—Optimization, Simulation, Roadside Unit (RSU)
Placement, VANET Simulation, High performance

I. INTRODUCTION

Innovations in the smart city paradigm expand the applica-
tions of Intelligent Transportation Systems (ITS). As a result,
there is a need to introduce new technologies, such as 5G
and beyond, to satisfy the growing communication demands.
ITS applications are generally evaluated with the help of
Vehicular Ad-hoc Network (VANET) simulators because of
the expensive real-world trials. The change in paradigm and
the new technologies have led to the development of several
VANET simulators with even more complexity. 5GPy [1]
and Simu5G [2] are some examples of recently proposed 5G
system-level simulators. Most VANET simulators, including
the newly proposed 5G simulators, struggle with scalability
because of the intention of high-fidelity modeling. Without
the help of High-Performance Computing (HPC) resources,
it is challenging to study large-scale scenarios. Researchers
circumvent the issue by conducting small-scale evaluations.
However, this may no longer be feasible due to the increasing
involvement of Artificial Intelligence (AI), both in the protocol
management as well as the ITS applications. ITS application
with AI tends to require extensive data, making small-scale
evaluations unreliable. Hence, large-scale VANET simulations
are becoming a necessity.

In addition to scalability in terms of scenario size, some ITS
applications are based on solutions requiring computationally
intensive optimization approaches. A common example where

optimization approaches are used is network infrastructure
planning. Deployment of infrastructure often comes with
conflicting goals and various possibilities. For example,
deploying Roadside Units (RSUs) [3] or edge servers [4]
over a city is a network planning study. While plenty of
installations can lead to a reliable network, the deployment
and maintenance costs are extremely high. Hence, a trade-
off is achieved by modeling and solving the problem using
an optimization approach. Each possible configuration must
be simulated during the parameter space exploration to
determine the solution’s quality. Each simulation run will
take considerable time if a VANET simulator of high fidelity
is used. This makes optimization approaches computationally
expensive. The run-time can be extremely high at large scale,
making it difficult to traverse the parameter space and find
an optimal solution.

This paper proposes an approach to solve optimization
problems for very large-scale ITS applications. The high
computational complexity is addressed by evaluating solution
quality using a high-performance abstract VANET simulator.
Initially, we quantify the performance benefits of using a
high-performance VANET simulator through execution time
comparisons. Also, we show that there is a negligible deviation
in the final optimal solution quality when compared to a high-
fidelity VANET simulator. Finally, the potential applications
for such an approach and some limitations are discussed. For
the sake of demonstration, we consider an RSU placement
optimization study, Genetic Algorithm for Road-Side Unit
Deployment (GARSUD) [3]. As a high-performance abstract
VANET simulator, we select Disolv [5] and validate the
optimal solution with ns-3 [6].

II. RELATED WORK

Optimization approaches are commonly employed in in-
frastructure planning studies such as RSU placement [3] and
Edge Server placement [4]. In this paper, we select RSU
placement for demonstration purposes. Literature has several
applications of optimization approaches to RSU placement.
Authors of [7] conducted an RSU placement study for a
highway scenario to minimize the transmission delay, with
the problem formulated as an Integer Linear Programming
(ILP). Authors of [8] carried out a similar study to determine
a minimal delay deployment. Further, they determined priority
locations to deploy RSUs so that a gradual deployment can
be carried out. Authors of [9] used ant colony optimization
heuristic for RSU placement. For our analysis, we select



Initialization: Random 

Solution

Evaluation: Estimate 

Solution Quality

Is Solution 

satisfactory?

Exploration: Generate 

new Solution

Yes

No

Stop

Start

Figure 1. General Optimization Workflow applicable for ITS applications

GARSUD, a genetic algorithm based RSU placement study
[3].

VANET simulators are commonly used in optimization ap-
proaches for fitness evaluation. Standalone network simulators
such as ns-3 [6] or OMNeT++ are also used to study VANET
scenarios. The introduction of 5G and beyond encouraged the
development of simulators dedicated to the study of 5G. Even
the most recent VANET simulators, such as VSIM [10], focus
on high-fidelity and protocol research. A major limitation
with most VANET simulators is that they are designed for
high fidelity, which results in poor scalability. As a result,
the run times for a simulation run are high, making them
unsuitable for fitness evaluation in optimization.

A common workaround to the scalability of VANET
simulators is to reduce the scenario scale. This can be observed
even in the RSU placement studies. In [3], authors employed
ns-2 to simulate a small-scale scenario with a maximum of
400 vehicles. In [7], ns-2 is used for evaluation, with 50
runs per configuration. The authors dealt with scalability and
the larger number of iterations by considering a small-scale
scenario with a maximum of 50 vehicles. With the increasing
complexity in the ITS applications, such small-scale scenarios
do not represent the city-scale behavior accurately. Hence,
carrying out large-scale VANET simulations is essential.

Another workaround for scalability is the custom imple-
mentation of VANET simulations. This can be observed in
traffic light studies such as [11], where the authors developed
a traffic density-based control system. For RSU placement,
authors of [9] used a custom implementation to evaluate
fitness. The custom implementation facilitated the simulation
of scenarios of up to 1000 vehicles. A major issue with such
custom implementations is the lack of support for reusability.
Such problem-specific simulation software is often not made
available to other researchers. Hence, a better approach is
to employ a simplified VANET simulator accessible to other
researchers. Disolv is one such abstract VANET simulator [5]
with simplified network models, designed to support large-
scale ITS applications.

III. WORKFLOW

A typical workflow of solving any ITS application using
an optimization approach is shown in Figure 1. There are
three main stages in the workflow:

1) Initialization: An initial solution is the starting point
for the optimization approach. This can either be obtained

from the real world or generated randomly depending on
the ITS application. Initialization must be done carefully
because further exploration by the algorithm depends on the
starting point. Carrying out multiple optimization runs with
varying initial conditions is often recommended. Otherwise,
a metaheuristic can also be used to avoid the local minima
problem.

2) Evaluation: One of the primary steps in the workflow
is evaluating the solution’s quality. Often, an ITS application
requires a complete simulation run to determine the solution
quality. This is especially applicable to network planning
studies at the city scale. Any infrastructure placement solution
can only be evaluated by simulating at least 24 hours to capture
the entire day’s traffic pattern. Optimizing only for peak-hour
or off-peak traffic may be insufficient. The number of possible
candidate solutions to evaluate can also be significantly large
depending on the optimization approach. Further, the number
of agents to simulate will be considerably higher because of
the city-scale scenario. As a result, the evaluation step can
become a huge performance bottleneck in the context of ITS
applications. Hence, making the evaluation step efficient can
result in noticeable performance gains. This allows users to
arrive at an optimal solution in a reasonable time.

3) Exploration: The optimization approach continues to
explore possible candidates until a satisfactory solution is
obtained. The exploration phase highly depends on the chosen
heuristic. For example, the next candidate to explore in a
genetic algorithm depends on parent selection, crossover, and
mutation steps [3]. In the simulated annealing technique, the
next candidate to explore is decided based on the annealing
temperature scheduled by the user. Once a candidate solution
is prepared, the workflow returns to the evaluation phase and
the cycle continues.

In addition to the computation efforts involved in the
three phases, hyperparameter tuning can be challenging. A
few runs of the entire workflow must be carried out to
determine appropriate hyperparameters for a given scenario,
ITS application, and the selected heuristic. If the heuristic does
not perform as expected, a different heuristic must be selected,
and the hyperparameter tuning efforts must be repeated for
the new heuristic. All of this costs significant computation
efforts. Hence, optimization workflows are computationally
demanding and are often carried out with the help of HPC
resources.

IV. GARSUD

A. GARSUD with ns-2

RSU placement involves deployment of RSUs subject
to various constraints. Hence, this is a suitable problem
that can be solved with the optimization workflow. Several
implementations are proposed in the literature, of which we
selected a genetic algorithm approach called GARSUD [3].
Genetic algorithm is a metaheuristic based on the concept of
natural selection in biological evolution [12]. A population
of individuals undergoes evolutionary processes, such as
parent selection, mutations, re-combinations, and selection.
Only the individuals adapted to survive can reproduce and
advance to subsequent generations. The less fit individuals
automatically do not survive. A similar idea is extended to



1 2 3

4 5 6

7 8 9

3 4 8 9

Chromosome

Figure 2. An example of a Chromosome for 4-RSU scenario with map
divided into 9 grid cells

solve an optimization problem. A random solution undergoes
evolution to eventually return an optimal solution.

In GARSUD, the expected optimal solution is the RSU
placement. Each RSU placement is represented as an individ-
ual. In genetic algorithm terms, it is called a chromosome. The
input map is divided into a grid with small cells, for example,
42x42m. Each cell is provided with a unique identifier. Given
a set of RSUs to be placed, an array of their respective
cell’s identifiers represents the individual placement. In the
evolution terminology, this acts as a chromosome, and all
genetic operations are performed on it. An example of a
chromosome is shown in Figure 2. For a 4-RSU scenario in a
9-cell map, an array of 4 elements represents a chromosome.
Each element in the array indicates the position of each RSU.
An RSU assigned to a cell is placed at a random location
within the cell.

The entire operation of the genetic algorithm depends on
the fitness evaluation. It plays a crucial role in determining
the quality of the chromosome, which in this case is the
RSU placement. At the end of each generation, a predefined
percentage of chromosomes with the best fitness values are
selected as parents. The selected parents undergo crossover
and re-combination operations, mimicking the reproduction
process. A new set of individual chromosomes is generated
as the next generation. Some randomization is introduced as
mutation to avoid local minima issues. Finally, some portion
of the parents with the best fitness values continue to survive
in the coming generation. As a result, there is no chance of
losing the best solution if it is found early in the evolution
process.

The optimization workflow defined in Section III on the
preceding page fits the overall procedure followed in the
GARSUD implementation. In GARSUD, authors used ns-
2 in the evaluation step of the optimization workflow. The
objective focused on finding the deployment that reduces
the transmission latency of emergency messages sent to the
vehicles. The objective can be anything; the only criterion is
that it represents good VANET conditions. Because of the
performance limitations of ns-2, authors were constrained by
the number of evaluations they could perform. As a result, the

Evaluate Placement

Prepare Position Files

Is Coverage 

satisfactory?
Yes

Prepare Link Files

Run Disolv

No

Initialization: Random 

Placement
Start

Stop
Calculate Coverage

Exploration: Generate 

new placement

Figure 3. GARSUD Workflow for RSU Placement using Disolv

scenario settings are relatively simplified. The test network
is 2km x 2km, and the maximum permissible transmission
range is 400. The maximum density of vehicles varies to 100,
200, 300, and 400. The number of RSUs deployed in the test
scenarios is set to 4 and 9. A smaller number of RSUs will
reduce the possible permutations to evaluate. As a result, the
number of evaluations by ns-2 is reduced, thereby arriving
at a desired solution in a reasonable time. They compared
the approach with other methods in literature to highlight the
benefits of GARSUD. There are no other details about the
execution time, and the performance impact of using ns-2 is
not discussed.

B. Hyperparameters

There are four main hyperparameters for genetic algorithms
to control the progress of the algorithm:

• Generations: It is the number of iterations that the
algorithm will take before termination. The higher the
generations, the better the chance for the algorithm to
reach an optimal solution.

• Solutions per Population: The number of placement
possibilities or the offspring generated per generation.
A higher number allows for a better sweep of the local
neighborhood.

• Parents Mating: The number of fit candidate solutions in
each generation considered for reproduction. A higher
number allows for more variety in the next generation.

• Keep Parents: The number of parent solutions with better
fitness that can progress to the next generation. This
prevents accidentally losing the best solution if it is
found earlier in the process.

Generations and solutions per population have the highest
impact on performance. Larger values increase the simulation
duration and hence add to the computational load.

C. GARSUD with Disolv

In the GARSUD workflow, we replace the ns-2 with a
simplified VANET simulator in the evaluation step. The goal
of this paper is not to highlight the capabilities of GARSUD.
Those findings can be found in the article on GARSUD [3].
Instead, the goal is to highlight that a simplified simulator
enables fast fitness evaluation in optimization approaches
without losing solution quality. We only use GARSUD to



0 20 40 60 80 100
Generations

0

10

20

30

40
U

n
co

ve
re

d
V

eh
ic

le
s

in
P

er
ce

n
ta

ge
Disolv Fitness Calculation

ns-3 Fitness Validation

Figure 4. Fitness evaluation with Disolv validated by the ns-3.

demonstrate our idea, and the intention is to improve the
evaluation stage.

As a simplified simulator, we select Disolv for the reasons
described in [5]. Since Disolv contains a simple network
representation, the latency model is not as accurate as that of
ns-2. Hence, the objective is modified to coverage, which can
be obtained by running the Disolv simulation. Each vehicle’s
coverage is defined as the average percentage of the simulation
duration for which it was within the transmission range of
an RSU. The total coverage of the scenario is the average
coverage of all the vehicles within the scenario. Due to the
way coverage is defined, it can be calculated only at the end
of a simulation. Hence, each possible candidate deployment is
evaluated with a complete simulation run. The best solution in
each generation is picked based on the coverage. The solution
obtained at the last generation is expected to be optimal with
the highest possible coverage. Scenario-specific tuning of
hyperparameters is required to arrive at an optimal solution.

The workflow with Disolv contains additional steps required
to make Disolv run. Mobility and link input files must be
prepared to simulate in Disolv [5]. Because of the change in
the positions of RSU, the preparatory steps must be repeated
before each candidate deployment evaluation. Hence, the
GARSUD workflow with the introduction of Disolv is defined
as shown in Figure 3. The preparatory steps required to run
Disolv add additional computation load. However, we can
observe in the later sections that this additional load has little
impact.

V. EXPERIMENTS

A sub-region of Cologne with a size of 5.5km x 4.5km is
selected for the experiments. 1-hour traffic is added to the
network with the help of SUMO. The simulation is run in
SUMO to generate the Floating Car Data (FCD) data required
for Disolv simulation. In [3], a transmission range of 400m is
selected for the analysis. This value is relatively high for urban
settings, potentially resulting in more packet failures. Hence,
we reduce the transmission range to 200m. The number of
RSUs to be deployed is 200.

A. Placement

Initial experiments are conducted to validate if GARSUD
implementation functions as expected. The hyperparameters

Table I
HYPERPARAMETERS FOR GARSUD

Hyperparameter Value

Generations 100
Solutions per Population 20
Parents Mating 10
Keep Parents 10

are selected as shown in Table I. It is important to note that
scenario settings and hyperparameters are only selected for
demonstration purposes. The goal is not to suggest an optimal
RSU count for the scenario or the best possible combination
of hyperparameters. Instead, the intention is to quantify the
performance of the overall optimization workflow. Hence,
the scenario and settings are arbitrarily chosen to require a
noticeable computational effort.

Nevertheless, it is essential to validate the implementation.
Validation can be done by observing the progression of
coverage value over the generations. The objective is set
to calculate the coverage output for each placement, and the
best value for every generation is stored. By subtracting it
from 100%, we get the vehicles that were not within the
communication range of RSU. This value should go down
over the generations if the solution quality is improving.
Indeed, the value goes down, as observed in the Figure 4. To
visually validate the placement output, the road network and
the positions of the RSUs are plotted in Figure 5. On the left
side of the Figure 5, the output is from generation 10. It can
be noted that the solution is not ideal, and there are relatively
high numbers of RSUs in the empty region of the network.
By the 100th generation, the algorithm reduced the number
of RSUs in the empty region. There is potential to further
optimize the placement with fewer RSUs. Since that is not
our goal, the same scenario and hyperparameters are used
throughout the paper.

B. Validation with ns-3

One of the main goals of the experiments is to demonstrate
that fast evaluation with simplified VANET simulators does
not result in loss of solution quality. This can be achieved
by running the entire GARSUD pipeline with a high-fidelity
VANET simulator to evaluate fitness. The evolution of the
fitness value with both simulators can be then compared to
validate the solution quality. However, a major drawback is
that the high-fidelity simulator has a high execution time. As a
result, it is practically infeasible to run GARSUD with a high-
fidelity simulator. We compare the best solutions of certain
select generations using both simulators as an alternative.

For a high-fidelity simulator, we chose ns-3 along with the
5G module developed by the authors of [13]. The simulation
scenario in ns-3 is designed to be similar to that of Disolv,
and the output from the simulator is converted to a coverage
value. Only the best solution of generations 1, 10, 20, and
100 are validated using ns-3. Coverage values from both the
simulators are plotted in Figure 4. It can be observed that the
fitness value progression of Disolv is following a similar trend
as that of ns-3. As the fitness value decreases with Disolv,
the fitness value from ns-3 also decreases. Due to the detailed



Figure 5. RSU placement solutions for generation 10 and generation 100

Table II
EXECUTION TIME COMPARISON

Approx. Execution Time

Fitness Evaluations Disolv ns-3

1 9.65 seconds 4.2 hours
1566 4.6 hours 300 days1

1 estimated via extrapolation

protocol stack and the realistic models of ns-3, some packet
drops were introduced in the simulation. At the time instants
of these packet drops, vehicles are not considered to be in
contact with the RSU. As a result, the coverage value obtained
from ns-3 is consistently below that obtained from Disolv.
Hence, we can conclude that a fast VANET simulator like
Disolv can effectively perform fast fitness valuation without
loss in solution quality.

C. Execution Time

Another goal of the paper is to quantify the performance
benefits of using a simplified VANET simulator like Disolv
for fitness evaluation. The modified workflow with Disolv,
as shown in Figure 3, runs Disolv and its preparatory steps
for each placement solution. Multiple placement solutions are
evaluated in each generation through Disolv simulation. As a
result, despite setting the generations as 100, the number of
fitness evaluations is much higher. Further, forwarding the best
parents to the next generation results in repeated solutions in
each generation. This leads to redundant evaluation runs,
which can be avoided to reduce computational load. To
prevent such redundant evaluations, a coverage value cache
is developed. The total number of times the evaluation step
is called comes to 4828. With the help of the coverage cache,
redundant runs are filtered out, and the remaining unique
evaluations are 1566. The total time taken by the GARSUD
algorithm to complete 100 generations is 15.1× 103 seconds.
From the above data, we can compute the average duration
of the evaluation step to be 9.65 seconds.

The execution times for both the simulators are listed in
Table II. The evaluation with ns-3 took 4.2 hours per candidate
solution. If the GARSUD workflow was designed with ns-3,

then the total execution time until the 100th generation will
be 72.99×106 seconds, roughly 844 days. By adding a cache
for repeated evaluations, the execution time can be brought
down to 25.93×106 seconds, roughly 300 days. The selected
scenario consists of 200 vehicles, and the evaluation step only
simulates 1-hour duration. If the scenario is at the city scale,
then the number of vehicles and RSUs are high. Further, a
complete day of simulation is necessary to determine the
fitness value, accounting for the traffic pattern fluctuations.
This adds additional computational load to the simulator, and
the execution time blows up significantly. As a result, it can
be concluded that usage of ns-3 for GARSUD at a large scale
is practically infeasible.

VI. DISCUSSION

The primary goal of this paper is to demonstrate that a
simplified VANET simulator is an efficient fitness evaluation
tool for optimization approaches. We selected RSU placement
as an example to showcase the idea. Further, we selected
GARSUD, a genetic algorithm approach, for RSU placement.
Originally, the authors of GARSUD focused on reducing the
transmission delay. We modified the objective to improve the
coverage over the selected road network. GARSUD runs for a
predefined number of generations and candidate solutions
per generation. Each placement solution is evaluated by
calculating the coverage based on a simulation run using a
simple VANET simulator. We selected Disolv as a simplified
VANET simulator. The workflow implementation is verified
for correctness by confirming that the coverage value improves
over the generations. Finally, we validate the best solution
for each generation by repeating the simulation using ns-3
with high-fidelity network models of 5G. The coverage results
from ns-3 indicate that the values follow similar trends as that
of Disolv. GARSUD algorithm took 4.6 hours to complete
100 generations. Instead of validation, if the entire workflow
of GARSUD was run with ns-3, then the runtime can be
extrapolated to approximately 300 days. This validates our
proposal that a simplified VANET simulator is sufficient for
optimization approaches in terms of solution quality while
simultaneously providing fast fitness evaluation capabilities
for better exploration.



A. Strengths

Using a simplified VANET simulator for fitness evaluation
has multiple benefits. The obvious benefit is the high-
performance capabilities compared to high-fidelity VANET
simulators. With a quick turnaround, there is potential for a
wider exploration of solution space. Further, hyperparameter
tuning can be carried out without being affected by the
computational limitations. The scale of the scenario can be
expanded to city-scale, allowing for better validation of new
proposed methods.

The objective function used by the original authors of
GARSUD is minimizing transmission latency. In this paper,
we selected the objective of maximizing the coverage of
vehicles. Any other network metrics can be used as an
optimization objective. For example, the objective can be
designed to reduce the average distance to the nearest RSU
or server. The handover operation from one terminal (base
station, RSU, server) to another can be expensive and affect
service quality. The objective can be designed to reduce the
number of handovers. Throughput can be another metric, and
the objective can be designed to maximize the throughput.
A simplified VANET simulator allows a user to carry out
multiple optimization runs with different objectives. The high-
performance capabilities of the simplified VANET simulator
keep the runtimes reasonable. Further, the best solutions can
be compared to determine the suitability of an objective for
a given scenario and the application.

B. Limitations

One of the limitations of using a simplified VANET simula-
tor, besides focusing on large-scale effects (as opposed to, e.g.,
antenna patterns [14] or shadowing effects at intersections
[15]), is the inability to detect anomalies in the VANET
under overload conditions. The optimal solution in the case
of GARSUD results in a placement capable of providing
maximum coverage. The placement solution’s performance
is guaranteed to be good when the system is in a steady
state. However, the characteristics of network behavior under
overload, such as high latency, interference, packet failures,
etc., are not detectable with simplified VANET simulators. A
strategy to overcome this is to carry out additional evaluations
on the final solution using a high-fidelity VANET simulator.

C. Applications

In addition to the genetic algorithm approach used in
this paper, several other metaheuristics are available to
solve optimization problems. Simulated annealing [16] and
Tabu Search [17] are popular meta-heuristics. They can
also be analyzed to check their suitability for solving RSU
placement. The RSU placement problem is only used as an
example. A similar approach can be incorporated for any
other ITS application that requires optimization. For example,
server placement problem [4], [18] can benefit from using a
simplified VANET simulator. Network slicing is another area
filled with optimization approaches [19]. Any optimization
approach for these ITS applications can be sped by using a
simplified VANET simulator in the evaluation phase.

Deep Reinforcement learning is emerging as an alternative
technique for solving optimization problems, especially the

ones with multiple objectives [20]. Sometimes, a few 100s
or even 1000s of episodes are required to achieve optimal
solution. If a single episode involves an entire VANET
simulation run, then a simplified VANET simulator can
be considered to model the environment. Similar to the
optimization approaches, the final solution can be further
evaluated using a high-fidelity VANET simulator.

REFERENCES

[1] R. I. Tinini, M. R. P. dos Santos, G. B. Figueiredo, and D. M. Batista,
“5GPy: A SimPy-based Simulator for Performance Evaluations in 5G
Hybrid Cloud-Fog RAN Architectures,” Elsevier Simulation Modelling
Practice and Theory, vol. 101, p. 102030, May 2020.

[2] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5G –
An OMNeT++ Library for End-to-End Performance Evaluation of 5G
Networks,” IEEE Access, vol. 8, pp. 181 176–181 191, Jan. 2020.

[3] M. Fogue, J. Sanguesa, F. Martinez, and J. Marquez-Barja, “Improving
Roadside Unit Deployment in Vehicular Networks by Exploiting Genetic
Algorithms,” Applied Sciences, vol. 8, no. 1, p. 86, Jan. 2018.

[4] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula, M. Ylianttila,
J. Riekki, and M. J. Sillanpää, “Edge Computing Server Placement with
Capacitated Location Allocation,” Journal of Parallel and Distributed
Computing, vol. 153, pp. 130–149, Jul. 2021.

[5] N. T. Tangirala, C. Sommer, and A. Knoll, “Simulating Data Flows of
Very Large Scale Intelligent Transportation Systems,” in Proceedings of
the 38th ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (SIGSIM-PADS 2024). ACM, Jun. 2024, pp. 98–107.

[6] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp.
15–34.

[7] Z. Ahmed, S. Naz, and J. Ahmed, “Minimizing Transmission Delays
in Vehicular Ad Hoc Networks by Optimized Placement of Road-Side
Unit,” Wireless Networks, vol. 26, no. 4, pp. 2905–2914, Jan. 2020.

[8] H. Yu, R. Liu, Z. Li, Y. Ren, and H. Jiang, “An RSU Deployment
Strategy Based on Traffic Demand in Vehicular Ad Hoc Networks
(VANETs),” IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6496–
6505, May 2022.

[9] A. Guerna, S. Bitam, and C. T. Calafate, “AC-RDV: A Novel Ant
Colony System for Roadside Units Deployment in Vehicular Ad Hoc
Networks,” Peer-to-Peer Networking and Applications, vol. 14, no. 2,
pp. 627–643, Oct. 2020.

[10] F. Irani, “VSIM: A New Simulation and Performance Evaluation
Tool for MANET and VANET,” International Journal of Information
Technology, Sep. 2024.

[11] M. Mathiane, C. Tu, P. A. Owola, and M. C. Nawej, “A SUMO
Simulation Study on VANET-Based Adaptive Traffic Light Control
System,” in Advances in Electrical and Computer Technologies.
Springer, 2022, pp. 225–237.

[12] C. R. Reeves and J. E. Rowe, Genetic Algorithms—Principles and
Perspectives: A Guide to GA Theory. Springer, 2002.

[13] N. Patriciello, S. Lagen, B. Bojovic, and L. Giupponi, “An E2E
simulator for 5G NR networks,” Elsevier Simulation Modelling Practice
and Theory, vol. 96, p. 101933, Nov. 2019.

[14] D. Eckhoff, A. Brummer, and C. Sommer, “On the Impact of Antenna
Patterns on VANET Simulation,” in 8th IEEE Vehicular Networking
Conference (VNC 2016). Columbus, OH: IEEE, Dec. 2016, pp. 17–20.

[15] S. Joerer, B. Bloessl, M. Segata, C. Sommer, R. Lo Cigno, A. Jamalipour,
and F. Dressler, “Enabling Situation Awareness at Intersections for
IVC Congestion Control Mechanisms,” IEEE Transactions on Mobile
Computing, vol. 15, no. 7, pp. 1674–1685, Jun. 2016.

[16] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications. Springer, 1987.

[17] F. Glover, “Tabu Search—Part I,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190–206, Aug. 1989.

[18] A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-
Enabled V2X Service Placement for Intelligent Transportation Systems,”
IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1380–1392,
Apr. 2021.

[19] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “VNF and CNF Place-
ment in 5G: Recent Advances and Future Trends,” IEEE Transactions
on Network and Service Management, vol. 20, no. 4, pp. 4698–4733,
Dec. 2023.

[20] J. Lu, J. Jiang, V. Balasubramanian, M. R. Khosravi, and X. Xu, “Deep
Reinforcement Learning-Based Multi-Objective Edge Server Placement
in Internet of Vehicles,” Computer Communications, vol. 187, pp. 172–
180, Apr. 2022.


